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Abstract— Recently, the interest in implantable antennas has significantly increased because of their attractive 

and diverse medical applications. As the human body is a hostile environment for implantable antennas, where it 
absorbs most of the antenna’s radiation, designing implantable antennas has become a challenging task. Despite 
the many efforts that have been made to construct successful designs of robust performance against the 
complicated human body environment; more efforts are still needed to overcome the current challenges. This 
paper aims to review recent advances in designing implantable antennas and upcoming research progress in the 
area of implantable antennas. To achieve this aim, the main differences in performance between antennas in free 
space and lossy media are emphasized firstly. Then, the main antenna’s designs proposed for implantable 
applications are surveyed and categorized based on critical design parameters. Finally, the main characteristics of 
existing designs are summarized, and future needs are highlighted. 
     

Keywords— Implantable antennas; Complementary split ring resonator; MedRadio; Split ring resonator; Far-field 

biotelemetry applications. 

 

1. INTRODUCTION 

Implantable devices have been recently used in a wide range of beneficial applications 

such as health care monitoring, capsule endoscopy and post-surgery checkups [1, 2]. In a 

typical healthcare system, the implantable device senses the bio signals from inside the 

human body and send them by the antenna to an external receiver as shown in Fig. 1 [3]. 

 

 
Fig. 1. A generic home health care system with a wireless implantable device [3]. 

 

The receiver can be close to the human body (near-field applications) or far at a 

distance longer than 3λ m (far-field applications) [4]. In both cases, the communication is 

mainly performed in the complicated human body. 

The human body is composed of non-uniform heterogeneous and lossy tissues that 

absorb most of the antenna’s radiations [5, 6]. It also alters most of the antenna characteristics 

and changes its performance as well [7]. Hence, several requirements should be considered 
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and verified to guarantee a successful implantable antenna design [8]. Different techniques 

and investigations have been proposed in the literature to improve the performance of 

implantable antennas and make them robust against the human body effect. Despite these 

efforts, there is still a room for improvement. In this paper, the designs and investigations of 

implantable antennas for biomedical telemetry applications in the far-field are surveyed and 

summarized. In Section 2, the implantable antenna design challenges and requirements are 

indicated and briefly discussed. Previous works to overcome these challenges is reviewed in 

Section 3. The weaknesses of previous designs and future needs are discussed in Section 4. 

The paper is finally concluded in Section 5. 

2. CHALLENGES AND REQUIREMENTS FOR THE IMPLANTABLE ANTENNA 
DESIGN 

The human body is a very complicated environment. It is lossy, dispersive and 

inhomogeneous, which unavoidably affects the analysis, characterization, realization, and 

design of implantable antennas [9-11]. The human body is composed of different lossy 

tissues characterized by conductivity (σ [S/m]) and dielectric constant (𝜀𝑟). These lossy 

tissues absorb most of the antenna radiation, which reduces the radiated power and 

degrades the antenna radiation efficiency (η) [12, 13]. The relationship between the radiated 

power and radiation efficiency is formulated as in Eq. (1) [14]: 

    η =  
𝑃𝑟𝑎𝑑

𝑃𝑖𝑛
                                                                                                                                             (1) 

where 𝑃𝑟𝑎𝑑 [W] is the radiated power and 𝑃𝑖𝑛 [W] is the input power. 

Unlike the case in free space, the near electric field |�⃗� | is strongly coupled with the 

surrounding human body tissues, which causes the power loss due to absorption as in       

Eq. (2) [14]: 

    𝑃𝑎𝑏𝑠 =
𝜔

2
∭𝜀0 𝜀𝑟

"  |𝐸|2 𝑑𝑉                                                                                                                             (2) 

where ω [rad/s] is the angular frequency, ε0 [F/m] is the free space permittivity, 𝜀𝑟
"  is the 

imaginary part of relative permittivity, |𝐸| [V/m] is the near electric field intensity and 𝑑𝑉 is 

the differential volume element over which the integration is taken. 

When a fraction of the power is absorbed; the radiated power becomes smaller as [14]: 

    𝑃𝑟𝑎𝑑 = 𝑃𝑖𝑛 − 𝑃𝑟𝑒𝑓 − 𝑃𝑎𝑏𝑠                                                                                                                                 (3) 

where 𝑃𝑟𝑒𝑓 [W] is the reflected power.  

The specific absorption rate (SAR [W/Kg]) is also increased when the near electric field 

increases as [15, 16]: 

    𝑆𝐴𝑅 =
𝑃𝐿

𝜌
=

𝜎|𝐸|2

2𝜌
                                                                                                                                               (4) 

where 𝑃𝐿 [W/m3] is the power loss density, 𝜌 [kg/m3] is the mass density and 𝜎 [S/m] is the 

electrical conductivity of the medium. 

Unlike the gain of antennas in free space, the gain of implantable antennas in the lossy 

human body is directly proportional to the near magnetic field as in Eq. (5) [17, 18]. 
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    𝐺𝑐𝑜𝑛 =
4𝜋√(𝜔𝜇) (2𝜎)⁄ (|𝐻|𝑑𝑒(𝑑/𝛿))2

𝑅𝑟 (𝐼𝑖)
2

                                                                                                        (5) 

where μ [H/m] is the tissue permeability, 𝑅[𝛺] is the intrinsic resistance, 𝑅𝑟[Ω] is the 

radiation resistance, |𝐻| [𝐴 𝑚⁄ ] is the magnitude of the magnetic field intensity taken in the 

maximum field direction of the antenna under consideration at distance 𝑑[m], 𝛿 is the skin 

depth and 𝐼𝑖[𝐴] is the input current. 

The radiation pattern and antenna bandwidth (BW) are also affected by the human 

body structure. The radiation pattern becomes asymmetric in the non-uniform human body 

but symmetric in free space [1]. Similarly, the antenna BW becomes wider in the human 

body than that in free space [14]. Hence, a compromise between the antenna radiation 

efficiency and BW should be assured, which requires accurate localization of the maximum 

radiation angle after implantation in the real human body. 

Based on the above discussion, it can be concluded that the design of implantable 

antennas is very challenging and requires the satisfaction of many contradicting conditions 

simultaneously. These conditions include size restrictions, biocompatibility issue, specific 

absorption rate (SAR) for patient safety, acceptable operating BW and sufficient radiation 

efficiency. The detailed requirements are as follows: 

a) Miniaturization: The implantable antenna must be small and can resonate at a 

relatively low frequency in the 401-406 MHz Medical Device Radio communications 

Service (MedRadio) band [19]. This requires miniaturization, which can be obtained 

using different techniques such as lengthening the current path of the radiator or by 

using high-permittivity dielectric substrate/superstrate [20]. 

b) Biocompatibility: The antenna should be made of biocompatible materials or enclosed 

by biocompatible layers to preserve patient safety as well as to protect the antenna 

from the conducting effect of human tissue [21, 22]. Additionally, for practical 

considerations, the antenna performance should be optimized considering the 

packaging issues [15]. 

c) Specific Absorption Rate (SAR) Satisfaction: The implantable antenna should comply 

with the SAR limitations. The SAR is required to be smaller than 1.6 W/kg when it is 

taken over the volume containing a mass of 1 gram of the absorbing tissue (1-g avg 

SAR < 1.6 W/kg) [23] or smaller than 2 W/kg for a volume containing 10 gram of the 

absorbing tissue (10-g avg SAR < 2 W/kg) [24]. 

d) Broad -10 dB BW and the coverage of the 433-434 MHz and 2.4-2.5 GHz Industrial, 

Scientific and Medical (ISM) band: The implantable antenna is preferred to be broad in 

BW. This is to guarantee good matching (S11 < -10 dB) in the real human body if 

detuning happens [6]. Also, it is preferred to work for other bands such as the 433-434 

MHz and 2.4-2.5 GHz ISM bands, which support the functionalities of wireless power 

transfer and power-saving, respectively [15, 25]. Supporting such functionalities 

reduces the cost and pain of surgeries to replace batteries. 

e) Relatively good radiation characteristics: The implantable antenna should be carefully 

designed with specific structures that decrease the near electric field, but increase the 

near magnetic field, in order to maximize the power radiated out from the human 

body [14].  
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 Different designs were reported in the literature to satisfy these requirements and to 

overcome the challenges stated above. These designs are surveyed in the following section. 

 

3. LITERATURE SURVEY 

In this section, some of the implantable antenna designs, existing in the literature are 

summarized based on the techniques employed to overcome specific challenges such as 

employing miniaturization, gain and radiation efficiency enhancement, BW enhancement 

and matching stability techniques. In addition, the body models used for the evaluation and 

validation are summarized in this section.  

3.1. Miniaturization Techniques 

The implantable antenna is required to resonate at a relatively low frequency around 

403 MHz for a small size, which requires miniaturization. Although the antenna works in a 

medium of relatively large relative permittivity, miniaturization is still needed. Different 

techniques were proposed in the literature to miniaturize the implantable antenna. These 

include: (i) lengthening the current flow-path on the radiating patch by meandering/ 

spiraling, (ii) stacking n number of patches, (iii) using high dielectric permittivity substrate 

materials, (iv) inclusion of shorting pins between the radiating patch and the ground and (v) 

using the metamaterial particle Split Ring Resonator (SRR) and its dual Complementary Split 

Ring Resonator (CSRR). 

The meandering technique increases the current path over the same dimensions and 

size of the corresponding structures without meandering [26]. In [27], a U-shaped microstrip 

meandered slot antenna was proposed for remote health monitoring at 2.45 GHz. The 

antenna has a small size of 35×29×1.6 mm3, which was 23.1% smaller than that for the 

antenna without the meandered slots. The antenna structure with and without the 

meandered slots is shown in Fig. 2. 

 

 
 (a)                                                               (b) 

Fig. 2. The implantable antennas proposed in [27]: a) with meandered slots; b) without the meandered slots. 
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Other meandered implantable antennas, which are shown in Fig. 3, can be found in 

[28-30],. These antennas worked at 403 MHz for the designs in [28, 29] and at 878 MHz for 

the design in [30]. More examples of meandered implantable antennas can be found in      

[31-35] for capsule endoscopy applications. These antennas were conformal to the capsule 

structure and worked for wider than (400-600 MHz) which is the optimum BW for capsule 

applications. Dual band (401-406 MHz and 2.4-2.5 GHz) meandered implantable antennas 

were proposed in [36, 37] for circular and cylindrical implants of around 5 mm in radius. 

Additional examples of rigid structure meandered antennas were proposed in [38, 39] at    

401-406 MHz, and also in [40] and [41] at 2.4-2.5 GHz and 3.525-4.79 GHz, respectively. The 

simple meandered structure enabled conformity and has small size for all of these designs. It 

also obtained a broad BW especially when being combined with SRR and CSRR such as in 

[37]. 
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                                              (a)                                                                       (b)                                       
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Fig. 3. The meandered implantable antennas proposed in: a) [28]; b) [29]; c) [30]. 

 

Spiraling is also one of the effective techniques used to miniaturize implantable 

antennas [42, 43]. Different implantable spiral structures-based designs were proposed in the 
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literature. Examples – such as these shown in Fig. 4 - can be found in [44-46]. These antennas 

had a small size of 6×5×0.3 mm3, 20×10×1.653 mm3 and 30×30×1.6 mm3, and resonated at 

2.45 GHz, 402-405 MHz, and 2.41 GHz for the design in [44], [45] and [46], respectively. The 

spiral implantable antennas found in [47-56] were rigid in structure and circular in shape to 

conform cylindrical implants. The same BW was almost obtained for these designs in 

comparison with that for the meandered antennas summarized previously. 
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        (b)                                                                         (c) 

Fig. 4. The spiral implantable antennas reported in: a) [44]; b) [45]; c) [46]. 

 

As stated earlier, stacking different patch layers is also used to miniaturize the 

implantable antenna. Examples - shown in Fig. 5 - are found in [57, 58]. These antennas work 

for the 401-406 MHz MedRadio band over small sizes of 10×10×2.01 mm3 and 14×16×2 mm3 

for the design in [57] and [58], respectively. In [57], two layers of spiral and split rings (SRs) 

radiating patches were used. A superstrate dielectric layer was loaded, on the top of these 

two layers, to prevent the direct contact with adjacent tissues. The two dielectric layers of the 

substrates between the patches and that of the superstrate effectively loaded the antenna and 

increased the effective relative permittivity, which decreased the resonant frequency [59]. 

The antenna in [58] was comprised of two layers of folded square inverted-F radiating 
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patches and a top layer of a meander inverted-F patch. Again, the dielectric loading of the 

three substrate layers between the radiating patches increased the effective relative 

permittivity which shifted the resonant frequency down. Another stacked planar inverted-F 

antenna (PIFA) antenna of three high permittivity (𝜀𝑟 = 10.2) layers, was proposed in [60]. 

Although the size of that antenna was of π × (7.5)2 × 1.9 mm
3 only; it had a narrow BW of 

12.4%. The antenna in [61] was composed of two radiating meandered layers and obtained a 

small size of 16.14×7.5×1.9 mm3. However, it only obtained a narrow BW of 5.7%. 
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Fig. 5. The implantable antennas with stacked layers proposed in: a) [57]; b) [58]. 
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Inserting a shorting pin between the ground and the radiating patch of the antenna can 

reduce its physical dimensions [62, 63]. The shorting and the feeding pins together form the 

structure of PIFA as shown in Fig. 6 [64]. The structure of the PIFA helps also obtaining other 

appealing features for implantable applications as will be discussed in a following section. 

Examples of implantable PIFA antennas can be found in [65-71]. 

 

Upper Plate
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Ground Plane

 
Fig. 6. Schematic diagram of a conventional PIFA antenna [64]. 

 

Another method of miniaturization is using substrates of large permittivity that reduce 

the physical size of the antenna [72]. Examples can be found in [73-78]. 

SRs and complementary split rings (CSRs) are among the most effective techniques to 

miniaturize antennas. They were also exploited for implantable applications [79, 80]. An 

example, which exploited three SRRs to obtain resonance at 403 MHz over a small size of 

9.5×9.5×1.27 mm3 can be found in [81]. The antenna’s structure is shown in Fig. 7. 
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Fig. 7. The compact dual band implantable antenna, based on split-ring resonators with meander line slots 

configuration, reported in [81]. 
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3.2. Gain and Radiation Efficiency Enhancement Techniques 

As stated previously, implantable antennas suffer from small radiation efficiency and 

gain due to attenuation in the human body. Some techniques were applied in the literature to 

increase the radiation efficiency and gain of implantable antennas. 

Insulation layers around the implantable antenna are usually used to facilitate the 

radiation and increase the radiation efficiency [3]. These layers decrease the near field 

coupling with the surrounding body tissues. This reduces the power absorption losses and 

thus; increases the power radiated out from the human body [14, 82]. Investigations on the 

effect of insulation layers on the performance of implantable antennas were provided in [83]. 

Different materials and thicknesses of the layers were investigated. It was found that a 

judicious choice of the internal biocompatible insulation leads up to a sixfold more efficient 

power transfer from the implanted source to the external receiver. Similar results were 

obtained in [84]. Other related investigations were also conducted in [82, 85-88]. 

Using magnetic type antennas, such as loop and slot antennas for the design, is also a 

very common method to improve the radiation efficiency and gain. This is because these 

antennas have a smaller near electric field and a larger magnetic field than the corresponding 

electrical type antennas [6, 17]. Some previous magnetic type antennas are summarized in 

Table 1. PIFA antennas have a loop in their structures between the shorting and feeding pins 

which increase the near magnetic field. Hence; they are more efficient than typical patch 

antennas. This point makes PIFAs very common for implantable applications [64, 68, 69]. 
 

 Table 1. A summary of recent magnetic type antennas.  

 

Ref Type Shape 
Size 

[mm] 
Frequency 

[MHz] 
Radiation 

efficiency [%] 
BW 

[MHz] 
Gain 
[dBi] 

[89] Loop 
Circular 

Meandered 
11×0.645 

402 ----- 200-600 -35.6 

902 ----- 800-1000 -26.3 

 
[90] 

 
Loop 

 
Rectangular 
 with CSRs 

 
 

30×15 

403 0.12 

 
 

300-2450 

-26 

433 0.2 -25.1 

868 0.3 -24 

915 0.35 -21 

2450 0.53 -15 

[91] Loop 
Rectangular 
meandered 

20×10 
433 ----- 

327-530 
-28.4 

434 ----- ----- 

[92] Loop 
Rectangular 
meandered 

30×40 
401 0.3 

390-420 
-21 

406 ----- ----- 

 
[93] 

 
Loop 

 
Rectangular 
meandered 

 
39×12 

402 0.08 

 
334-1820 

-28.4 

434 0.12 -27.1 

868 0.48 -17.6 

915 0.44 -17.8 

[94] 
Cavity 

slot 
Cubic 2.8×4.0×1.6 2450 0.39 

2130-
2800 

-22.3 

[95] Slot Circular 10×10× 0.4 2450 2.5-5.6 ----- -9 

[96] Slot 
Rectangular 
meandered 

10×11×1.27 
402-405 ----- 

354-469 
-27.7 

433-434.8 ----- ----- 

[97] Loop Rectangular 20×44 433 0.387 ----- -20.1 

[97] Loop 
Rectangular 
meandered 

20×10.5 433 0.056 ----- -28.5 
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SRs and CSRs are found to increase the near magnetic field or decrease the near electric 
field of the implantable antenna. CSRs were integrated to a loop antenna in [90] to decrease 
the near electric field and, hence, increase the antenna radiation efficiency. The antenna 
structure is shown in Fig. 8. 

 

  
Fig. 8. The loop antenna with CSRs proposed in [90] (dimensions in mm). 

 
A layer of multiple SRs was placed on the top of a patch antenna in [14] to increase the 

near magnetic field of the antenna and hence its gain. The antenna with the layer is shown in 

Fig. 9. 

 

 
Fig. 9. The loop antenna with the SRs proposed in [14] (dimensions in mm). 

3.3. Bandwidth Enhancement Techniques 

Several techniques were proposed in literature to widen the BW of the implantable 

antennas. Traditional techniques such as combining multiple modes were proposed in [98] 

for a patch antenna which obtained a simulated -10 dB BW of 35% between 2.24 and          

2.59 GHz. This technique was also applied in [99] in which two modes with close resonant 

frequencies were excited by a microstrip line with a rotated square slot in a defected ground 

structure.  

Recently, designing the implantable antenna on a flexible structure was found to widen 

the implantable antenna BW. This is because the flexible structure can exploit the overall 

dimensions of the implantable device and, hence, a larger antenna size can be obtained. 

When the antenna size is increased, the BW increases accordingly. Examples can be found in 

[95, 100]. They are shown in Fig. 10. 
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                                              (a)                                                       (b) 

Fig. 10. The flexible implantable antennas proposed in: a) [95]; b) [100] (dimensions in mm). 

3.4. Matching Stability Techniques 

The antenna is considered robust when the matching level of S11 < –10 dB is 

maintained for different dielectric properties (εr, σ) of the surrounding tissues. 

Antennas of a microstrip structure with a ground provide better detuning stability 

than that of antennas without ground (such as dipole and loop antennas), as their ground 

reduces the effect of adjacent tissues [101, 102]. A high permittivity superstrate along with a 

robust microstrip antenna design can provide sufficient decoupling from the surrounding 

tissues, thus keeping the antenna well-tuned. 

The antenna body coupling is reduced using a high-Q narrowband microstrip antenna 

loaded with a high permittivity biocompatible superstrate, which result in improving the 

detuning immunity as proposed in [101]. 

 In general, obtaining good matching (S11< -10 dB) over a wide range of frequency 

guarantees good performance, even if detuning happens in the real human body or from one 

tissue to another. A stable impedance matched Ultra-Wideband antenna was proposed in 

[103]. Another Ultra-Wideband conformal capsule antenna was also proposed in [104] to 

obtain a stable impedance matching. 

3.5. Biocompatibility and Specific Absorption Rate  

Insulation layers of biocompatible materials such as Beek are used to obtain 

biocompatibility. Examples of the biocompatible materials used in the literature are 

summarized in Table 2. 

The insulation layers around the antenna decrease the near electric field coupling and 

the specific absorption rate accordingly [83]. The specific absorption rate can also be 

decreased for magnetic type antennas in comparison with electrical type antennas. These 

antennas have a smaller near electric field compared to the electric type antennas. Electric 

type antennas with magnetic layers based on SRs are found to have a smaller SAR as 

opposed to the same antennas without the rings [14]. CSRs are also found to decrease the 

near electric field and hence the SAR [90]. 

The performance of the implantable antenna is mainly influenced by the human body 

model of simulation and measurements. Thus; it is very important to validate the 

implantable antenna performance in different body models of different sizes and equivalent 

materials [14].  
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Table 2. Examples of materials for the biocompatible layers.  

 
The anatomical body model is considered as the best tool for evaluating the 

performance of implantable antennas as it provides the best resemblance of the real human 

body [111]. An anatomical body model is depicted in Fig. 11.  

 

The implant

     
       (a)                                                     (b) 

Fig. 11. An example of an anatomical body model: a) front view; b) internal cross section [6]. 

 

Other simplified with different shapes (circular, rectangular, etc.) models of uniform 

structures were used. The simplified models were mainly used at the initial stages of the 

design to accelerate the design process. In general, the resonant frequency and the -10 dB 

matching are almost unaffected by the shape and dimensions of the simplified body model 

while the radiation efficiency and gain are decreased for larger body dimensions. Thus; it is 

important to validate the implantable antenna performance in the anatomical body model 

[14]. Table 3 summarizes - the reported in literature - body models, used for simulations. 

 

The biocompatible material 

Dielectric properties 
Ref 

Permittivity (εr) Loss tangent (tanδ) 

Silica 3.8 0.0002 [26] 

Ceramic Alumina (Al2O3) 9.9 0.0002 [46, 93] 

Alumina 9.40 0.006 [21, 45] 

Peek 3.20 0.010 [53, 83] 

Teflon 2.1 0.001 [61] 

Silicon 3.1 0.0025 [75] 

Polypropylene 2.55 0.003 [83] 

Polyethylene 2.26 0.0002 [92] 

Poly dimethyl siloxane 2.8 0.005 [105] 

Silastic® MDX4-4210 biomedical grade elastomer 3.0 0.001 [21,106] 

Zirconia (ZrO2) 29.0 0.001 [107] 

Polyimide 3.5 0.008 [108] 

Parylene-C 2.95 0.013 [109] 

Ultem 3.15 0.0013 [110] 
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Table 3. Summary of the body models, used for simulations. 

 

Ref Simplified Anatomical 

 

[29] 

Shape Rectangular 

 

----- 

Material Multi-layer (muscle, fat and skin) 

Size 

[mm3] 
378×378×199.52 

 

[45] 

Shape Rectangular 

 

----- 

Material Skin 

Size 

[mm3] 
100×100×20 

 

[58] 

Shape Rectangular 

 

----- 

Material Muscle 

Size 

[mm3] 
150×80×110 

 

[90] 

Shape Elliptic Cylindrical 

 

----- 

Material Muscle 

Size 

[mm3] 
180 × 100 × 50 

 

 

[91] 

Shape Elliptic Cylindrical CST Laura human voxel body 

model 

Age: 43 Year 

Weight: 51 kg 

Length: 163 cm 

Material Muscle 

Size 

[mm3] 
180 × 100 × 50 

 

[104] 

Shape Rectangular 

 

----- 

Material Muscle 

Size 

[mm3] 

60 × 60 × 70 

100×100× 110 

 

[105] 

Shape Cylindrical 

 

----- 

Material Multi-layer (muscle, fat and skin) 

Size 

[mm3] 
𝜋 × (40)2 × 90 

 

 

[110] 

 

Shape Rectangular CST Ella human voxel body 

model 

Age: 26 Year 

Weight: 57.3 kg 

Length: 136 cm 

Material Multi-layer (muscle, fat and skin) 

Size 

[mm3] 
100×100× 90 

 

[112] 

Shape Spherical 
 

----- 

Material Muscle 

Size 

[mm3] 

4

3
× 𝜋 × (100)3 

 

 

[113] 

Shape Conical 
CST Katja human voxel body 

model 

Age: 43 Year 

Weight: 62 kg 

Length: 163 cm 

Material two layers (muscle and bone) 

 

Size 

[mm3] 

 

72×122× 190 
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Different values of radiation efficiency and gain were obtained in the same body model 

for different aspect ratios [14]. Longer body models tend to underestimate the gain and 

radiation efficiency values. 

For measurements, homogeneous liquid body phantoms or/and heterogeneous pork 

are mainly used. The homogeneous liquid body phantoms are usually prepared from water, 

salt, and sugar that are added together with specific percentages to obtain specific dielectric 

properties that resemble a human body tissue at a specific frequency. The preparation 

method can be found in [14, 15]. The liquid body phantom is exhibited in Fig. 12. 

 

 
Fig. 12. Liquid body phantoms in [14]. 

 

Measurements are also conducted in pork. Unlike liquid body phantoms, pork is 

heterogeneous and hence the antenna performance at different frequencies can be measured 

from pork interior. Pork phantoms are shown in Fig. 13. 

 

 
Fig. 13. Pork phantoms [14]. 

 

Measurements in living animals (rats and pig) were also conducted in [15] and [114], 

respectively as shown in Fig. 14. The in-vivo testing is important to validate the antenna 

performance in realistic multi–tissue environments in which the dielectric properties vary 

with frequency, age, sex, size, and temperature. In general, the dielectric properties of pigs 

are very close to those of the human body and thus pigs can be considered much more 

accurate for the in-vivo measurements than rats. 
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subcutaneousIntra-muscular

Epidermis

Dermis

Hypodermis

 

 
(a) 

 
(b) 

Fig. 14. Images indicating the antenna implantation site inside: a) porcine [15]; b) rats [114]. 

4. LIMITATIONS OF THE EXISTING DESIGNS AND FUTURE NEEDS 

In this section, the main limitations of the previous designs, discussed in the preceding 

section, are summarized as following: 

 For the miniaturization techniques: most of the existing miniaturization techniques are 

based on meandering and spiraling. In general, spiral structures are more efficient in 

the human body than meandered structures [115]. However, they cannot be easily 

applied to some antenna structures such as loop antennas. The meandering techniques 

tend to narrow the antenna BW, which does not guarantee performance at the intended 

band of operation if detuning happens in the real human body. Using a substrate of 

high dielectric constant also tends to narrow the antenna BW. Although stacking 

multiple layers is an effective way of miniaturizing the antenna, it makes the antenna 
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BW narrow in general [60, 61]. Using SRs seems to be an effective miniaturization 

technique as these rings have many advantages for the implantable antenna in general. 

However, they increase the complexity of the structure and measurements [90]. Hence, 

new antennas based on SRs or CSRs of simple structures will be an effective way of 

miniaturization. 

 For the gain and radiation efficiency enhancement techniques: As discussed above, 

insulation layers is an effective technique of reducing the near field coupling and the 

power loss due to absorption. However, they increase the overall thicknesses of the 

implantable device. Their effect is small for small thicknesses. Most magnetic antennas 

exploited for implantable applications are loop or slot. PIFA is also popular as it has a 

relatively large near magnetic field despite not being magnetic in type. In comparison 

with the loop antenna, PIFA provides enormous conformity to some implant structures 

exploiting the battery as a ground, its BW is relatively narrow [15]. Moreover, it cannot 

be easily designed on flexible substrates. Integrating SRs or CSRs to typical patch 

antennas in some manner to increase their near magnetic field will help in increasing 

the patch antenna efficiency and obtaining a wide BW at the same time [90]. 

 For the BW enhancement techniques: Although it is not always possible,  especially for 

antennas of simple structure, widening the BW by exciting multiple resonant 

frequencies close to each other is very effective. Flexible antennas tend to increase the 

antenna BW as they exploit larger dimensions of the implant structure. However, new 

BW enhancement techniques are still needed for rigid antennas.  

 For the matching stability techniques: Although the matching of antennas with 

grounds are much more stable than that without grounds, antennas without a ground 

such as the loop have many preferable features for implantable applications. Despite 

the fact that the antenna matching becomes more stable when a substrate of high 

dielectric constant is used, the BW tends to narrow. 

 

In general, new designs of antennas based on SRs or CSRs with their many interesting 

features in terms of miniaturization, BW and radiation characteristics are still needed and 

highly recommended. 

5. CONCLUSIONS 

Implantable antennas have many attractive applications such as glucose monitoring 

and post-surgery checkups and, thus, have gained a wide interest. The design of implantable 

antennas is very challenging as they work inside the complicated human body that absorbs 

most of the antenna’s radiation and alters its performance. Different requirements such as 

miniaturization, biocompatibility, stable matching and relatively good radiation efficiency 

and gain are needed for an efficient implantable antenna’s design. This paper has surveyed 

the different designs reporteded in literature for implantable antennas and has summarized 

the design challenges and the main techniques to overcome them.   

The existing miniaturization techniques are based mainly on lengthening the current 

path that results in narrowing the antenna BW. Other techniques, such as using high 

dielectric constant substrate and layers stacking, have also the effect of narrowing the 

antenna’s BW. The options of using magnetic antennas or insulation layers could increase the 
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radiation efficiency and gain of the implantable antennas. However, this is accompanied 

with either restricting the antenna’s structure for specific antenna types or increasing its size. 

Exploiting SRs or CSRs is an effective way of increasing the radiation efficiency and gain. 

Yet, it sometimes increases the complexity of the design and measurements. Simpler designs 

based on the basic structures of SRs and CSRs are needed. 

The stability of matching can be increased if a ground or high dielectric constant 

substrate is used. Nevertheless, this is accompanied by restricting the antenna’s structure for 

patch antennas mainly, or narrowing the antenna’s BW. 

To sum up, SRs and CSRs have many appealing features for implantable applications. 

New designs exploiting them are highly recommended and encouraged for an efficient 

implantable antenna design that overcomes the current challenges. Multiple rings or multi-

layered rings are recommended as they are expected to provide a larger increase in the 

radiated power compared to a single ring with a single layer. The rings structure parameters 

should be carefully investigated and optimized for maximum power radiation. 
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